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1 Introduction

A graph G an (r, t)-Ruzsa-Szemerédi graph graph ((r, t)-RS graph for short) if its edge set can be par-
titioned into t edge-disjoint induced matchings, each of size r. Such graphs consisting of amounts of large
pairwise edge-disjoint induced matchings have found several applications in combinatorics, complexity the-
ory, and information theory.

In this work, I briefly introduce some results about graphs decomposable into induced matchings. Besides,
I will also present some of my thoughts.

2 Definition

In this section, I clarify basic concepts and definitions.1

Definition 1 ((r, t)-Ruzsa-Szemerédi graph). A graph G an (r, t)-Ruzsa-Szemerédi graph graph ((r, t)-RS
graph for short) if its edge set can be partitioned into t edge-disjoint induced matchings, each of size r.

The problem of the decomposing graph into subgraphs is closely related to the problem of set packing.

Definition 2 ((v, k, t)-packing). Let X be a v-element set, X = {1, 2, . . . , v}. A P ⊂
(
X
k

)
is called a

(v, k, t′)-packing if |P ∩ P ′| < t holds for every pair P, P ′ ∈ P .

Note that in the paper [8], a (v, k, t′)-packing is also called “r-sparse”.

Definition 3 ((v, k,H)-packing). Let H be a family of t′-sets on {1, 2, . . . , k}. A family F of k-sets on v
elements is called a (v, k,H)-packing if for all F ∈ F there is a copy of H,HF such that the t-sets of F
corresponding to HF are covered only by F .

By counting the number of t-sets, we have |F| ≤
(

v
t′

)
/|H|.

From my understanding, the problem of (r, t)-RS graph is a special case of the (v, k,H)-packing problem,
where v = N , t′ = 2, k = 2r, and H = {{2k − 1, 2k} : 1 ≤ k ≤ r}.

1Though some concepts are fundamental for students of mathematics, they are fresh for me. Thus, I also write them down.
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3 Main Results

In this section, I collect some results. My work is more like a research porter. From my perspective,
there are three problems people care for (r, t)-RS graph:

1. A general question: what kind of values (r, t) make (r, t)-RS graph exists?

2. Is it possible for the graph to be dense and r large in the polynomial?

3. For r linear in N , what is the maximum value of r?

3.1 Values (r, t) Making (r, t)-RS Exist

For the first problem, there is a negative answer.

Theorem 1 (Ruzsa and Szemerédi, 1978 [9]). There is no N -vertex (r, t)-RS graph for r, t both linear in
N .

They proved that this result implies the celebrated theorem of Roth [10], that a subset S of [N ] =
{1, · · · , N} without nontrivial 3 -term arithmetic progressions have size at most o(N).

However, they prove that there is (r, t)-RS graph with sufficient large r and t.

Theorem 2 (Ruzsa and Szemerédi, 1978 [9]). There is N -vertex (r, t)-RS graph for r = N/eO(
√
logN),

t = N/3.

Though the construction in the proof of this theorem provides rather dense graphs, but still ones in which
the number of edges is o

(
N2
)
. I want to see this paper but can’t find it on the Internet.

For the first problem, there is a positive answer, which is useful for applications in complexity theory
and information theory. It is from (v, k,H)-packing problem.

Theorem 3 (Rödl, 1985 [8]). For every fixed k, t, whenever v −→ ∞, we have:

max{|P | : P is a(v, k, t)-packing } = (1− o(1))

(
v
t

)
/

(
k
t

)
(1)

Theorem 4 (Frankl and Füredi, 1987 [6]). For every fixed k and H, the size of the largest H-packing is

(1− o(1))

(
v
t′

)
/|H|, whenever v → ∞.

From Theorem 4 and the fact that the problem of (r, t)-RS graph is a special case of the (v, k,H)-packing
problem, we have the following result with v = N , t′ = 2, k = 2r, and H = {{2k − 1, 2k} : 1 ≤ k ≤ r}.

Theorem 5. For any fixed r, there are (r, t)-RS graphs on N vertices with rt = (1− o(1))

(
N
2

)
edges.

To prove that induced matchings of size larger than Θ(logN), the techniques in the original paper don’t
work. In 2002, Fischer et al [4] construct graphs whose matchings are of linear size.

There is another construction results for problem 1.
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Theorem 6 (Birk, Linial and Meshulam, 1993 [3]). There is N -vertex (r, t)-RS graph, in which r =

(logN)Ω(log logN/(log log logN)2), t = N2/24r.

The construction in this theorem is for the application in [3]. It is crucial to obtain graphs with positive
density. Thus, their number of edges is about N2/24. The method here relies on a construction of a low
degree representation of the OR function, due to Barrington, Beigel and Rudich [2]. The application in [3]
is in information theory, the graphs are applied to design an efficient deterministic scheduling scheme for
communicating over a shared directional multichannel.

I want to understand the proof, but the paper is hard with communication theory. I leave it for future
learning.

3.2 Dense (r, t)-RS with r Polynomial in N

The problem 2 people care about is for some applications-especially ones in which there is a tradeoff
between the number of missing edges and the number of induced matchings needed to cover the graph. The
question is they want to find a (r, t)-RS graph with the following two properties:

1. Have positive density rt/N2 asymptotically;

2. t is polynomially large in N .

None of these constructions satisfy the above properties and solve problem 2.

Meshulam conjectured that there were no such graphs. In 2013, Alon, Moitra and Sudakov [1] disprove
this conjecture in the strongest possible sense. They construct graphs with density 1 − o(1) and yet r is
nearly linear in N .

Theorem 7 (Alon, Moitra and Sudakov, 2013 [1]). There are (r, t)-RS graphs on N vertices with rt =

(1− o(1))

(
N
2

)
, and r = N1−o(1).

I think it is exciting. From this construction, not only can we have graphs with positive edge density
which are edge-disjoint unions of induced matchings of size NΩ(1), but in fact, we can have edge density
1− o(1), where the size of each matching is N1−o(1).

3.3 Maximum t when r linear in N

For problem 3, to find the maximum value of t when r linear in N , there are two works. The first one is
by Fischer et al [4].

Theorem 8 (Fischer et al, 2002 [4]). There is N -vertex (r, t)-RS graph for r = N/3−o(N), t = NΩ(1/ log logN).

This theorem also contains a construction. The matchings here are of linear size, but their number is much
smaller than in the original construction of Ruzsa and Szemerédi. The construction here is combinatorial,
and Fischer et al. use these graphs to establish an NΩ(1/ log logN) lower bound for testing monotonicity in
general posets.

I am interested in this construction and present the proof in the following.
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Proof of Theorem 8. Let m,n be two integers where n is divisible by 3 and n = o(m). The vertex set of U
is X = Y = [m]n, thus N = mn. We define a family of (partial) matchings on the vertices of U and take the
edge-set of the graph to be the union of the edge-sets of these matchings. The matchings are indexed by a
family of n

3 -subsets of [n]. Let T ⊆ [n], |T | = n
3 . Let p = n

3 .

Definition of a matching MT . Color the points in the two copies of [m]n by blue, red and white. The
color of a point x is determined by

∑
i∈T xi. First, partition the vertex set into levels, where the level Ls

is the set
{
x :
∑

i∈T xi = s
}

. Then combine levels into strips, where for an integer k = 1 . . .m, the strip
Sk = Lkp ∪ . . . ∪ L(k+1)p−1. Color the strips Sk with k ≡ 0(mod3) blue, the strips with k ≡ 1(mod3) red,
and the remaining strips white. The matching MT is defined by matching blue points in X to red points in
Y as follows: If a blue point b in X has all its T -coordinates greater than 2 , match it to a point r = b−2 ·1T
in Y . The vector 1T is the characteristic vector of T ; it is 1 on T and 0 outside T . Note that r is necessarily
red. MT is clearly a matching. Our next step is to show that it is large.

Claim. |MT | ≥ N/3− o(N)

Proof of the claim. Consider the ”projected” matching M on the vertices of the bipartite graph UT =(
[m]T , [m]T

)
, which is defined by T . Namely, partition the points of [m]T as described above, coloring them

by blue, red and white, and match a blue point in one copy of [m]T to a red one in another, by subtracting
2 · 1T . Since MT is determined by the coordinates in T , it is enough to show that |M | ≥ P/3− o(P ), where
P = mp.

Let B,R,W ⊆ [m]T be the sets of the blue, red and white points, respectively. Then P = |B|+ |R|+ |W |.

First, we claim that |W | ≤ |R| + |{x : ∃i, xi = 1}|. Indeed, consider a new matching between W and
R defined by matching w ∈ W to w − 1T . Assume that m ≡ 0(mod3). Then the only unmatched points
in W are contained in the set {x : ∃i, xi = 1}, proving this claim. Similarly |W | ≤ |B| + |{x : ∃i, xi = m}|.
Next, observe that the only blue and red points (in the corresponding copies of [m]T ) unmatched by
M are these which have a coordinate whose value is in {1, 2,m − 1,m}. It follows that |M | > (|R| +
|B|)/2 − |{x : ∃i, xi ∈ {1, 2,m− 1,m}}| > P/3− (|{x : ∃i, xi ∈ {1, 2,m− 1,m}}|+ |{x : ∃i, xi = 1,m}|) ≥
P/3− 6p

m · P . Since p = o(m), the claim holds.

Now, let T, T1 be two n
3 -sets in [n], such that |T ∩ T1| ≤ n/7. We claim that no edge of MT is induced by

MT1
. Indeed, let b be matched to r by MT , in particular b− r = 2 · 1T . If the edge (b, r) is induced by MT1

,
then b is colored blue and r is colored red in the coloring defined by T1. By the definition of the coloring,
since

∑n
i=1 bi >

∑n
i=1 ri, b is located in a blue level separated by a white level from the red level of r. This

implies that
∣∣∑

i∈T1
bi −

∑
i∈T1

ri
∣∣ ≥ n

3 . On the other hand,
∣∣∑

i∈T1
bi −

∑
i∈T1

ri
∣∣ = ∣∣∣∑i

i∈T1
(bi − ri)

∣∣∣ =∣∣∑
i∈T1

(2 · 1T )i
∣∣ = 2 · |T ∩ T1| ≤ 2n

7 < n
3 , reaching a contradiction.

We would like to have a large family F of n
3 -subsets of [n], such that the intersection between any two of

them is of size at most n
7 , or, equivalently, such that the Hamming distance between any two of them is at

least 2n
3 − 2n

7 = 8n
21 . So we need a lower bound on the size of a constant weight binary error-correcting code

F with the following parameters: block length n, weight w = n
3 , distance d = 8n

21 . Applying the Gilbert-
Varshamov bound for constant weight codes [7], we get 1

n log |F| ≥ H(1/3)− 1/3 ·H(4/7)− 2/3 ·H(2/7)−
o(1) = 0.014 − o(1). Choose m = n2 and define the edge-set E(U) of U by E(U) =

⋃
T∈F MT . By the

preceding discussion, U is a graph on N = n2n vertices, whose edge-set is a disjoint union of 2Ω(n) =

NΩ( 1
log log N ) induced matchings of size N/3− o(N).

The above construction also gives (cN,NΩ(1/ log logN))-RS graphs for c ≤ 1/4. Alon notices that when
c > 1/4, t can only be constant. This is also obvious by the following Theorem 9.
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The followings are works from [5]. Fox, Huang and Sudakov discuss several situations of the constant c,
for c > 1/4, c = 1/4 and c < 1/4 respectively.

Honestly, I only understand parts of the paper, from the start to Theorem 3.4. Thus, I mainly discuss
these parts I understand.

3.3.1 c > 1/4 for r = cn

Theorem 9. Suppose G is an (r, t)-RS graph on N vertices, then

r ≤

{
N
4

(
1 + 1

t

)
if 2 ∤ t

N
4

(
1 + 1

t+1

)
if 2 | t

(2)

Moreover, these bounds are tight for every positive integer t and infinitely many N .

Proof of Theorem 9. Suppose the edge set of G can be partitioned into induced matchings M1, · · · ,Mt, each
containing exactly r edges. Denote by Vi the set of vertices contained in the edges of Mi. Then |Vi| = 2r.
Moreover, each of the r edges of Mi intersects Vj in at most one vertex, since otherwise Vi and Vj must span
a common edge of G. This implies that |Vi ∩ Vj | ≤ r. Let vi ∈ {0, 1}N be the characteristic vector of Vi.
Then for all 1 ≤ i < j ≤ t, the Hamming distance satisfies

dist (vi, vj) = |Vi|+ |Vj | − 2 |Vi ∩ Vj | ≥ 2r + 2r − 2r = 2r.

This is already enough to show that t is constant, using bounds from coding theory. But one can do slightly
better. Let v0 be the all-zero vector. To get a tight upper bound, notice that the above inequality can be
extended to all 0 ≤ i < j ≤ t since, for 1 ≤ i ≤ t, |Vi| = 2r. Denote by ai (resp. bi ) the number of vectors
vj equal to 0 (resp. 1) in the i-th coordinate, then ai + bi = t+ 1. By double counting,

2r

(
t+ 1
2

)
≤

∑
0≤i<j≤t

dist (vi, vj)

=

N∑
i=1

aibi

≤

{
N(t+ 1)2/4 if 2 ∤ t
Nt(t+ 2)/4 if 2 | t

The last inequality follows from that aibi is maximized when ai = bi = (t + 1)/2 for odd t, and {ai, bi} =
{(t+ 2)/2, t/2} for even t. By simplifying the inequality we immediately obtain Equation 2.

To show that the bound is tight, it suffices to consider the case t = 2k+ 1. Let H be KG(2k+ 1, k), the
Kneser graph whose vertices correspond to all the k-subsets of a set of 2k+1 elements, and where two vertices
are adjacent if and only if the two corresponding sets are disjoint. We define the matchings M1, · · · ,M2k+1

in the following way: the edge (A,B) belongs to Mi if and only if A ∩ B = ∅ and A ∪ B = [2k + 1]\{i}. It
is easy to see that B is determined after fixing A and i, which implies that Mi forms a matching. In order
to show that every matching is induced in H, we take (A,B) and (C,D) both from Mi with A ̸= C,D,
then A ∪ B = C ∪ D = [2k + 1]\{i}, it is not hard to check that A ∩ C,A ∩ D are both nonempty

and therefore (A,C) and (A,D) are not contained in any Mj . By calculation, N =

(
2k + 1

k

)
, while

r = 1
2

(
2k
k

)
= N

4

(
1 + 1

2k+1

)
. Hence H is a

(
N
4

(
1 + 1

2k+1

)
, 2k + 1

)
-RS graph on N vertices.
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During the proof, the sentence “This is already enough to show that is constant, using bounds from coding
theory” is not obvious for me. Thus, I read the proof following the sentence, where the most important is
the double counting and the conditions for quadratic function taking the maximum.

For the construction of the upper bound, it utilizes the seperating property of the Kneser graph. Note
that KG(2k + 1, k) has

(
2k + 1

k

)
vertices and

(
k + 1
k

)
= k + 1 edges.

3.3.2 c = 1/4 for r = cn

Proposition 1. There exists (N/4, 2 log2 N)-RS graph for every integer N that is a power of 2.

The following proof is based on hypercube graph. It utilizes the parity of the vector representation of
vertices in hypercube.

Proof. Let k = log2 N and consider the k-dimensional hypercube graph H with vertex set {0, 1}k, where
two vectors are adjacent if their Hamming distance is 1 . We first partition the vertices into odd and even
vectors, according to the parity of the sum of their coordinates. For 1 ≤ i ≤ k, we let the i-th matching
Mi consist of edges between vectors v⃗ and v⃗ + e⃗i, such that v⃗ is even and its i-th coordinate is 0 ; and
the (k + i)-th matching Mk+i consist of edges between an odd vector v⃗ whose i-th coordinate equals 0 and
the vector v⃗ + e⃗i. This construction gives 2k = 2 log2 N matchings, and obviously each matching involves
exactly half of the vertices. In order to verify that the matchings are induced, we consider two distinct edges
from Mi, which are (u⃗, u⃗+ e⃗i) and (v⃗, v⃗ + e⃗i), such that both u⃗ and v⃗ are even and their i-th coordinates
are 0 . Clearly the pairs (u⃗, v⃗) and (u⃗+ e⃗i, v⃗ + e⃗i) cannot form edges of H since they have the same parity.
Moreover, u⃗ and v⃗+ e⃗i (similarly, v⃗ and u⃗+ e⃗i ) differ in at least two coordinates. Therefore for all 1 ≤ i ≤ k,
the matchings Mi we defined are induced. Using a similar argument, we can also show that the matchings
Mi+k are induced.

The above construction can be improved When log2 n is an even integer. We can add two additional
induced matchings. The first one consists of (u⃗, v⃗) where u⃗+ v⃗ =

−→
1 and both are even vectors. The second

matching contains all edges (u⃗, v⃗) where u⃗ + v⃗ =
−→
1 and both are odd vectors. This gives the following

corollary.

Corollary 1. There exists (N/4, 2 (log2 N + 1)) − RS graphs on N vertices for every N that is an even
power of 2 .

Lemma 1. If G is an (r, t)−RS graph on N vertices, then its bipartite double cover G×K2 is an (2r, t)−RS
graph on 2N vertices.

Proof. Denote by G′ = G × K2 the bipartite double cover of the graph G. The vertices of G′ are (v, i)
with v ∈ V (G) and i ∈ {0, 1}. Two vertices (u, 0) and (v, 1) are adjacent whenever u and v form an
edge in G. Note that an induced matching Mi = {(uj , vj)}rj=1 in G corresponds to a matching M ′ =

{((uj , 0) , (vj , 1))}rj=1 ∪ {((uj , 1) , (vj , 0))}rj=1 in G′, which is of size 2r. It is also straightforward to check by
definition that M ′ is an induced matching. Therefore G′ is an (2r, t)-RS graph on 2N vertices,

Theorem 10. If G is an
(
N
4 , t
)
-RS graph on N vertices, then t ≤ 8 (log2 N + 1).

Proof. From Lemma 1, it suffices to show that for all N -vertex bipartite graphs G whose edges can be
decomposed into induced matchings M1, · · · ,Mt, each of size N/4, t is at most 8 log2 N .
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Denote by dv the degree of vertex v in G. We consider the subgraph H of G, with edges being the pair
of vertices u, v such that du + dv ≥ t and (u, v) ∈ E(G). Note that e(G) = Nt

4 . By the Cauchy-Schwarz
inequality,

∑
(u,v)∈E(G)

(du + dv − t) =

 ∑
v∈V (G)

d2v

− t · e(G) ≥ N

(∑
v∈V (G) dv

N

)2

− Nt2

4

= N

(
Nt/2

N

)2

− Nt2

4
= 0.

For any edge (u, v) ∈ E(G), all the edges incident to either u or v must belong to different matchings.
Therefore du + dv ≤ t+ 1. If we denote by Ei the number of edges (u, v) such that du + dv = t+ i, we have
E1 +E0 +E−1 + · · ·+E−t = Nt/4, while inequality (3) implies that E1 −

∑t
j=1 jE−j ≥ 0. Summing these

two inequalities gives 2E1 + E0 ≥ Nt/4 and so E1 + E0 ≥ Nt/8. So H is a N -vertex graph with at least
Nt/8 edges and thus its average degree is at least t/4. Hence, H has a subgraph F of minimum degree at
least t/8.

Set s = t/8. For each vertex v of G, let Av denote the set of induced matchings containing v. Clearly
|Av| = dv. We claim that if v and u are at distance k in F , then when k is odd, |Au ∩Av| ≤ k; and when
k is even, |Au ∩Ac

v| ≤ k. This statement can be proved using induction. The base cases when k = 0 and 1
are obvious. Now we assume that it is true for all k ≤ i. For k = i+ 1, suppose u and v are at distance k.
Let w be a vertex at distance 1 from v and i = k − 1 from u. When i is odd, from the inductive hypothesis
we have |Ac

v ∩Ac
w| = t− |Av ∪Aw| = t− |Av| − |Aw|+ |Av ∩Aw| ≤ 1 and |Aw ∩Au| ≤ i. Therefore,

|Au ∩Ac
v| ≤ |Au ∩Aw|+ |Ac

w ∩Ac
v| ≤ i+ 1.

Similarly, when i is even, we have |Av ∩Aw| ≤ 1 and |Ac
w ∩Au| ≤ i, and hence

|Au ∩Av| ≤ |Av ∩Aw|+ |Ac
w ∩Au| ≤ i+ 1.

Now choose an arbitrary vertex v in F , the degree of v in F is at least s = t/8. For every integer i ≥ 0, let
Ni be the set of vertices at distance i from v in graph F . By the assumption that G is bipartite, each Ni

induces an independent set. We denote by ei the number of edges of F that are between Ni and Ni+1 and
contained in matchings in Av ( resp. Ac

v) when i is odd (resp. even). For odd i, we estimate the number
of edges of F between Ni and Ni+1 that are contained in matchings in Ac

v in two different ways. Since
every vertex u ∈ Ni is contained in at least s− |Au ∩Av| ≥ s− i such edges, and every vertex w ∈ Ni+1 is
contained in no more than |Aw ∩Ac

v| ≤ i+ 1 such edges, we have

(s− i) |Ni| − ei−1 ≤ (i+ 1) |Ni+1| − ei+1.

Similarly, when N is even, by bounding the number of edges between Ni and Ni+1 that belong to matchings
in Av, we obtain the same inequality as above. Summing up the inequalities for i = 0, · · · , k, we have

k∑
i=0

(s− i) |Ni| −
k−1∑
i=0

ei ≤
k+1∑
i=1

i |Ni| −
k+1∑
i=1

ei.

Simplifying this inequality gives

(k + 1) |Nk+1| ≥
k∑

i=0

(s− 2i) |Ni| − e0 + ek+1 + ek ≥
k∑

i=0

(s− 2i) |Ni| .

The second inequality follows from the observation that e0 = 0 since all edges between N0 and N1 are in
Av.
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In the next step, we prove by induction that |Ni| ≥
(

s
i

)
. For i = 0 and 1 this is obvious. Now,

assuming it is true for all i ≤ k, we have

|Nk+1| ≥
1

k + 1

k∑
i=0

(s− 2i) |Ni| ≥
1

k + 1

k∑
i=0

(s− 2i)

(
s
i

)

=
1

k + 1

(
k∑

i=0

(s− i)

(
s
i

)
−

k∑
i=0

i

(
s
i

))

=
1

k + 1

(
k∑

i=0

s

(
s− 1
i

)
−

k∑
i=0

s

(
s− 1
i− 1

))

=
s

k + 1

(
s− 1
k

)
=

(
s

k + 1

)
Note that the number of vertices in N0 ∪N1 ∪ · · · ∪Ns is at most N . We therefore have

N ≥
s∑

k=0

|Ni| ≥
s∑

k=0

(
s
k

)
= 2s,

Solving this inequality gives s ≤ log2 N and hence t ≤ 8 log2 N .

The best result the paper gets for c = 1/4 is the following theorem. As I don’t fully understand it, I just
paste it here.

Theorem 11. If an N -vertex graph G is an (N/4, t)−RS graph, then t ≤ (6 + o(1)) log2 N .

3.3.3 c < 1/4 for r = cN

Similarly, as I don’t read through the case c < 1/4, I just paste the results of the paper here.

Theorem 12. For every ε > 0, if G is an (r, t)-RS graph on N vertices with r = cN for 1/5+ ε ≤ c < 1/4,
then t = O(N/ logN).

Theorem 13. There exists an absolute constant b > 0, such that for r ≥ (1/4− b)N , if G is an (r, t)−RS
graph G on N vertices, then t = N/

(
(logN)2Ω(log∗ N)

)
= o(N logN).

4 Thoughts for Conjecture 1

There are several conjectures in [5]. I mainly think about the following one.

Conjecture 1 When the size of matchings is close to n/4, there are two quite different constructions
of Ruzsa-Szemerédi graphs. One is the Kneser graph KG(2k + 1, k) with k ∼ 1

2 log2 n, which is an
(n/4 + Θ(n/ log n), (1 + o(1)) log2 n)-RS graph. The other is the hypercube {0, 1}log2 n, which is an (n/4, 2 log2 n)-
RS graph. Can we find a family of (r, t)-RS graphs that bridge between these two examples, say with
r = c log2 n for some c ∈ [1, 2], and t− n/4 = Ω(log n)?
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Thoughts for Conjecture 1 What if I expand the definition of the Kneser graph? In Kneser graph
KG(2k + 1, k), vertices correspond to all the k-subsets of a set of 2k + 1 elements, and where two vertices
are adjacent if and only if the two corresponding sets are disjoint.

Define KG(2k + 1, k, g, h), vertices correspond to all the (k + g)-subsets of a set of 2k + 1 elements, and
where two vertices are adjacent if and only if the two corresponding sets have the intersection of exact h
elements. But this construction can not meet the following properties:

1. When g = k + 1, h = 2k, KG(2k + 1, k, k + 1, 2k) is exact the hypercube of dimension (k + 1).

2. When g = 0, h = 0, KG(2k + 1, k, 0, 0) is degenrated to the Kneser graph KG(2k + 1, k).

Thus, KG(2k + 1, k, g, h) is not a transition or interpolation from kneser to hypercube.

Then, I calculate the density of the two graphs. Assume that n is the dimension of the hypercube. I want
to fix the n for hypercube and Kneser. Because both of their vertices can be treated as a kind of coding in
the space {0, 1}n. I want n fixed during the transition. Then, we have the ratio:

1. #edge/#vertex of hypercube is n2n/2
2n = n

2 ;

2. #edge/#vertex of Kneser is (nk)k/2
(nk)

= n−1
4 .

Thus, I want to make the density transits from n
2 to n−1

4 by deleting edges in hypercube or adding edges in
Kneser. First, I ask the following question:

Question 1: What happen if I forbidden the edge generated by the difference in the first dimension con-
nection rule in hypercude? For example, when n = 3, vertices like (0, 1, 0) and (1, 1, 0) will not connect.

In this way, the hypercube becomes a (n − 1)-regular graph. As the construction of matching in the
Proposition 1, we know that M0 and Mk (k is n here) are no longer matching. Because within these induced
subgraphs, there are no edges. Thus, t goes from 2 log2 n to (2 log2 n−2). In this way, for Mi, we don’t need
to restrict all v⃗ to be odd (or even). We just need to restrict that all v⃗≥2 to be even (or odd), where v⃗≥2

means the part of v⃗ from dimension 2. However, in this way, there are also t = n/4 without any increase.
I think the construction is based on parity, which is not suitable for the “forbidding the edge generated by
≤ i-th dimension”. I think it is due to the construction is very specific for the hypercube.

Then, I ask the next question:

Question 2: Can we paste the Kneser to the hypercube?

Here, “canonically” pasting is no use. “canonically” means treating the vertex vector (k elements are 1
and the rest are 0) in the Kneser as the vertex in hypercube (with dimension n = 2k+1). It is obvious that
Kneser and hypercube have no edge intersection and the edges of Kneser will destroy the construction of the
hypercube.

Other pasting methods, such as pasting partial of Kneser to hypercube, seem no use. It is hard.
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5 Conclusion

In this survey, I do nothing but collect others’ results about induced matchings, read their proofs, and
make my failed attempts. I think I need to read more constructions to get more familiar to the (r, t)-RS
graph.
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